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Abstract

In this paper, we describe the dynamic processor modes supported by Puma, an operating
system for massively parallel computing systems. Puma was designed for computing systems
that consist of thousands of nodes connected by a communication network with high bandwidth
and low message-passing latency. The individual nodes of such a system may have multiple
processors with a shared memory. This presents the potential to exploit parallelism at two
levels: parallelism between nodes and parallelism within a node.

In this paper, we describe the mechanisms we have developed to support library and appli-
cation writers in their efforts to exploit the parallelism provided by a single node. Following the
Puma philosophy, the mechanisms provided by the kernel represent a very thin (but safe) level
above the actual hardware. In addition to the kernel mechanisms, we also describe higher-level
library functions that application writers or people writing runtime systems can use.

1 Background

The Puma [11, 13] operating system was designed to support high performance computing on mas-
sively parallel computing systems. We are primarily interested in supporting applications that
consume a large portion of the resources offered by such a computing system (e.g., memory, proces-
sor cycles, communication bandwidth, etc.) for several hours or, perhaps, days. Examples of such
applications include climate modeling and simulations of nuclear explosions.

High performance computing involves the management of at least one critical resource. For
some applications the critical resource may be memory, for others it may be processor cycles, for
still others the critical resource may be communication bandwidth. To support these applications,
the Puma kernel provides a very thin, but safe, interface to the underlying hardware. In this respect
Puma is similar to the MIT Exo kernel [5], which also attempts to push as much functionality as is
safely possible up to the user level. Puma is not taking this idea to the same extremes as the Exo
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kernel design does. Performance critical functions, such as the handling of incoming messages and
the mechanisms that enforce the policies made at user level, all reside within the Puma kernel.

A high-level interface usually simplifies application development by providing a view that better
matches the computational model used in the application. However, the implementation of a high-
level interface, by definition, provides management for one or more resources. As an example,
implementations of high-level languages provide management for registers, memory layout, and
other resources provided by the machine. If the implementation of an interface manages a critical
resource, this management may conflict with the application’s management needs. When such a
conflict arises, the application may not be able to meet its performance goals. The thin interface
provided by the Puma kernel should minimize the impact of these conflicts.

Because the Puma kernel only provides a low-level interface, this interface may be obscure and
cumbersome for many application programmers. Libraries provide interfaces with semantics that
better match the models used by application programmers. Because these higher-level interfaces
are in the libraries, they can be used when appropriate and easily circumvented when performance
considerations mandate more direct management of the resources.

Current generation massively parallel computing systems have thousands of nodes connected by
a high-performance communication network. The communication networks have bandwidths on the
order of hundreds of megabytes per second with message passing latencies on the order of microsec-
onds. While there may be some hardware support for distributed shared memory, communication
between nodes is essentially based on explicit message passing.

In Puma, we manage the nodes in a massively parallel system using “space sharing.” Users
allocate a collection of nodes for their applications at load time. Puma supports multitasking on the
nodes; however, the tasks running on a node are all running on behalf of a single user (and presumably
on behalf of a single application). This approach lets the application programmer manage a known
set of resources on each node. If we were to combine tasks from different users on a single node,
as is done in traditional multitasking operating systems, the resources provided by the node to a
given task would be dependent on the current mix of tasks. This situation would make it virtually
impossible for the application programmer to manage the resources as needed.

Each node in a massively parallel computing system may have a small collection of processors
(two to four) with a shared memory [12]. This organization provides two levels of parallelism to be
managed: parallelism among the processors in a node, and parallelism among the nodes within the
system.

In the Puma programming model an application consists of a collection of tasks that communicate
using explicit message passing. Each task runs on a single node of a massively parallel system. When
a task is distributed among the processors on a node, the portion of the task that runs on a processor
might naturally be called a “thread.” We have intentionally avoided this terminology because of the
semantic baggage that is typically associated with the term thread.

In Puma, the processors on a node are gang scheduled: when a task is scheduled for execution, all
of the processors on the node are available to the scheduled task. We do not attempt to run different
tasks (from the same application) on the individual processors of a node. When an application task
is running on a node, all of the processors share a common address space (page table).

Before we discuss the dynamic models of processor usage supported by Puma, we consider virtual
nodes. When there are multiple processors on a node, one possible use of the processors is to have
each processor emulate a virtual node. Puma supports virtual nodes. For the most part, virtual
nodes act just like physical nodes. One difference is that the text segment of a single physical node
can be shared (read-only) by all CPUs on that node—Puma does not currently support any other
form of sharing across different address spaces. Unlike the other multi-processor usage models that
we describe in this paper, using the processors as virtual nodes is a static decision. The user must
select virtual nodes when the node is allocated and this selection remains in effect until the node is
de-allocated.

In the remainder of this paper, we describe the mechanisms that support dynamic processor



usage modes in Puma. In the next section, we describe the processor modes that are supported
from an application perspective. In Section 3, we describe the Puma kernel structures and portions
of the kernel interface that support dynamic processor usage modes. In Section 4, we describe the
library interface that we have developed to better match the application programmer’s model of
processor modes. Finally, in Section 5 we describe related work.

2 Processor Modes

In Puma, all of the resources on a node are managed by a single processor, the system processor. This
is the only processor that performs any significant processing in supervisor mode. The remaining
processors run application code and only rarely enter supervisor mode. These processors are called
user processors. This arrangement produces a slight asymmetry in the performance of the processors
and may complicate the application’s management of processor cycles. However, it greatly simplifies
the structure of the Puma kernel and makes more of the processor cycles available to the applications.

2.1 Heater Mode

The simplest processor usage mode is to run both the kernel and application task on the system
processor. We call this arrangement “heater mode” because the user processors only provide heat.
Figure 1 illustrates heater mode for two processors.
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Figure 1: Heater Mode

The “mailbox” shown in Figure 1 is used to pass arguments from the application task to the
kernel and back. In Puma, each task has a mailbox. The use of a mailbox instead of the call
stack complicates the application’s interface to the kernel, but improves overall performance and
generalizes to the other processor usage modes easily. The performance improvement stems from
the fact that the kernel does not need to validate the stack space used for parameter passing—the
mailbox is in a fixed location and known to be at a valid address. The added complexity is easily
hidden in the library calls that eventually result in a kernel call.

The mailbox provides the following fields:

e space for the arguments passed to the kernel,
e space for the kernel return value,
e a “mailbox busy” flag,

e a “run kernel” flag, and



e a “kernel done” flag.

When the processors are used in heater mode, each kernel call copies the arguments to the
mailbox, sets the “run kernel” flag in the mailbox, and issues a trap (software interrupt) instruction
to invoke the kernel. When the kernel has finished processing the request, it sets the return status
in the mailbox, sets a “kernel done” flag in the mailbox, and re-establishes the context of the task.
(The “mailbox busy” and “kernel done” flags are not necessary in this mode; their importance will
become apparent when we describe the remaining modes.)

Heater mode does not offer any significant advantages for the application programmer. However,
this is the easiest mode to make operational and is, for historical reasons, the default processor
mode.

2.2 Kernel-Coprocessor Mode

Figure 2 illustrates kernel-coprocessor mode. In this processor arrangement, the kernel runs on the
system processor and the application task runs on the user processor. When the processors are
configured in this mode, the kernel polls the external devices and the application mailbox, looking
for work.
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Figure 2: Kernel Coprocessor Mode

When the processors are used in kernel-coprocessor mode, each kernel call clears the “kernel
done” flag, copies the arguments to the mailbox, sets the “run kernel” flag in the mailbox, and polls
the “kernel done” flag. When the kernel notices that the “run kernel” flag has been set, it will
process the request. When it has finished, the kernel sets the return status in the mailbox, and sets
the “kernel done” flag in the mailbox.

Because the time to transition from user mode, to supervisor mode, and back to user mode can
be very significant, this mode offers the advantage of fast kernel calls. To support this claim, we
measured the time taken in a kernel call for Puma running on the Intel i860 processors of an Intel
Paragon. When the application and kernel share the same processor (heater mode), a null kernel
call' takes 5.5 microseconds. When the kernel runs on a separate processor, the same kernel call
only takes 3.8 microseconds.

2.3 User-Coprocessor (cop) Mode

Figure 3 illustrates user-coprocessor mode. In this mode, the system processor and user processors
both run kernel and application code. However, the kernel code running on the user processor does

!The null kernel call does not perform any processing, it simply returns to the application.



not perform any of the resource management activities, it only notifies the system processor when
there is a request in the mailbox.
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Figure 3: User Coprocessor Mode

When the processors are used in user-coprocessor mode, each kernel call first waits until the
“mailbox busy” flag is clear and sets this flag (this can be implemented at user level using a test
and set or swap operation). Next, the task clears the “kernel done” flag, copies the arguments to
the mailbox, sets the “run kernel” flag in the mailbox, and issues a trap instruction. The kernel on
the user processor handles the trap by issuing an interrupt to the system processor and returning to
the application which then polls the “kernel done” flag. When it has finished handling the request,
the kernel on the system processor sets the return status in the mailbox, sets the “kernel done” flag
in the mailbox and restores the context of the task running on the system processor. When the
requesting task notices that its request has been completed, it copies the return value and clears the
“mailbox busy” flag.

The advantage of this mode is that it provides more processor cycles for the application task.
Admittedly, the two processors are not symmetric: the part of the task running on the system
processor will not progress as rapidly as the portion of the task running on the user processor.
This may complicate the application’s management of processor cycles; however, a fully symmetric
solution would have increased the complexity of the Puma kernel and decreased the total number
of cycles available to the application.

2.4 Using More Than Two Processors

The processor usage modes that we have described are based on two processors. If a node has
three or more processors, the essential concerns are whether a portion of the task shares the system
processor with the kernel and whether there are multiple processors running portions of the task.
Having a portion of the task running on the system processor provides additional processor cycles,
but requires that applications issue a trap instruction to activate the kernel on the system processor.
Having multiple processors running portions of the task also provides more processor cycles, but
requires that the portions of the task wait while the shared mailbox resource is being used by
another processor. (We are looking into the possibility of having a mailbox per task per processor.)

2.5 Dynamic Switching

One of the significant advantages of kernel-coprocessor mode is improved message passing perfor-
mance. When a portion of the task is running on the system processor, the arrival of a message
generates an interrupt which transfers control from the task to the kernel. Similarly, to send a
message the task must trap into the kernel. These transfers of control to the kernel and back to the



task on a single processor are a significant portion of the latency associated with message passing.
By only running the kernel on the system processor, the application programmer can avoid these
transfers and thereby reduce the latency of message passing. As an example, message passing laten-
cies on the Intel Paragon drop from 25 microseconds to 17 microseconds by using the equivalent of
kernel-coprocessor mode.

Thus, kernel-coprocessor mode is beneficial for applications that are bounded by message passing
latencies. Similarly, user-coprocessor mode is beneficial for applications that are bound by the
availability of processor cycles. Many applications transition between phases when they are bound
by message passing performance and phases when they are bound by the availability of processor
cycles. To support these applications, Puma provides mechanisms that allow the application to
switch between the various modes dynamically.

3 Kernel Structures and Interface

The portion of the kernel interface that supports dynamically changing the processor mode is defined
by a single kernel call and a small collection of shared data structures. The kernel call is used to
allocate or de-allocate a processor. The shared data structures control the portion of the task being
run by a processor.

In Puma, the process control block (PCB) for an task is split between the kernel and the appli-
cation. The two pieces are called the application’s PCB and the kernel’s PCB. The application’s
PCB can be read and updated when a processor is in user or supervisor mode. The kernel’s PCB
can only be read and updated when a processor is in supervisor mode.

Among other things, the application’s PCB has a full processor context for each processor. Each
processor context includes things like the program counter, stack pointer, condition codes, and
so forth. Leaving the processor contexts in a user level data structure makes it possible for the
application task to build and manipulate processor contexts without invoking a kernel operation.
To protect the integrity of the system, privileged portions of the processor state (e.g., processor
mode) are set to safe values when the kernel loads one of these processor contexts onto a processor.

The kernel’s PCB for an task includes a set of flags indicating which processors are currently
allocated by the task. When an application is scheduled for execution, the dispatch step involves
identifying the active application and copying the allocated processor flags to a fixed location in the
kernel. The system and user processors poll these flags (the system processor also polls for hardware
events), looking for work. Each of the allocated processors uses the active application’s PCB to
identify and load its context. Any unallocated processors continue to poll the allocation flags.

When the system processor identifies the end of an application’s time quantum, it sends each of
the user processors a doorbell interrupt. The user processors respond to this interrupt by saving
their context in the application’s PCB. After they have saved their state, the user processors set a
flag to indicate that they are ready for the next application and enter a loop waiting for the system
processor to establish the next application. Once all of the user processors have saved their states,
the system processor saves and clears the processor allocation flags. When the system processor
indicates that it has finished saving the application’s state, the user processors return to polling the
processor allocation flags, waiting for work.

Any processor can deallocate any other processor. Deallocating a processor that is not currently
allocated has no affect. If all processors are deallocated the application is terminated.

When the system processor is deallocated, it simply stays in the kernel code polling for external
requests. When a user processor is deallocated, the system processor sets the processor allocation
flag to indicate that the user processor is no longer allocated and interrupts the user processor. Upon
receiving the interrupt, the user processor notes that it is no longer allocated and simply enters its
polling loop.

To run a portion of its code on another processor, a task first builds a processor context in its



PCB. Then it calls the kernel to allocate the processor. This makes it relatively easy for a task to
enter user-coprocessor mode.

Entering kernel-coprocessor involves deallocating the system processor. Prior to deallocating
the system processor, the application needs to migrate to one of the user processors. This involves
copying the current context into the appropriate context buffer, allocating the new user processor,
and deallocating the system processor.

4 The Library Level

While there is nothing conceptually difficult in building processor contexts, allocating processors,
and deallocating processors, the details change from processor to processor and the code is difficult
to debug. To better match the application programmer’s expectations, the Puma application library
provides the following three routines:

int proc_migrate( int processor );
int proc_exec( int processor, void (* code)( void ), void *stack );

int proc_dealloc( in processor );

The proc_migrate routine is used to migrate a portion of the task from the processor it is currently
running on to the processor identified by the argument. If the target processor is currently allocated,
proc_migrate returns a nonzero result and the application remains on the processor it was using.
Otherwise, proc_migrate returns zero and the application will be running on the target processor.

The proc_ezec routine is used to start running a portion of the task on another processor. If the
target processor is currently allocated, proc_exec returns a nonzero result; otherwise, it returns zero
and the application will be running the routine identified by code on the target processor.

The proc_dealloc routine deallocates a processor. A return value of zero indicates successful
deallocation. A nonzero return value indicates that the target processor was not allocated. As
should be obvious, this routine does not return if the target processor is the same as the processor
on which the routine is executed.

While these routines reflect a higher level interface than the interface provided by the kernel, we
recognize that they still represent a fairly low-level interface. To use these routines, the application
programmer must still manage stack space for the allocated processors and must keep track of which
processors are currently allocated. Here, we expect that a higher level runtime support system, for
example Cilk [3], might be used to hide these details from non-systems programmers.

5 Related Work

The NX message passing system [10] under OSF 1/AD on the Intel Paragon uses one CPU as a
message coprocessor. The implementation differs from kernel-coprocessor mode in that only the
message passing primitives are run on the system processor. All other kernel calls are handled by
the user processors. The option to use message coprocessor mode is selected at the time the kernel
is compiled. No dynamic reconfiguration is possible.

The PEACE message-passing kernel [6] runs on MANNA nodes. These nodes have two i860
processors sharing a local memory, an I/0 interface, and a network connection; much like the nodes
of an Intel Paragon. PEACE allows the two processors to be used in one of several modes. The
two main modes are message-passing coprocessor mode and asymmetric multiprocessor mode. The
former mode corresponds to Puma’s kernel-coprocessor mode except that the locking of the mailbox



in shared memory is handled differently. The asymmetric multiprocessor mode of PEACE is similar
to Puma’s user-coprocessor mode. Which mode is being used is determined when the PEACE kernel
is configured.

Remote queues [4] and an active message implementation based on remote queues [7], show that
the message coprocessor model has its limitations. User defined handlers cannot be run on the
message coprocessor because they might dead-lock the node and eventually the whole system. The
active message implementation avoids this problem by compiling often used handlers directly into
the kernel code that is executed on the system processor.

Several studies have looked at the cost of context switches [8, 9, 1]. Our kernel-coprocessor mode
preserves the caches and TLBs of the individual CPUs, thereby eliminating one of the main costs in
a typical context switch.
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